Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Applied Soil Ecology
Vol. 95, 2015; Pages: 128–139


Response of ammonia-oxidizing bacteria and archaea to biochemical quality of organic inputs combined with mineral nitrogen fertilizer in an arable soil

Esther K. Muema, Georg Cadisch, Carolin Röhl, Bernard Vanlauwe, Frank Rasche

Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany.

Abstract

There exists a considerable knowledge gap about the effect of biochemical quality of organic inputs and their combination with inorganic N on abundance and community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Here, we investigated in a Humic Nitisol of 10-year old field experiment in Kenya the effect of contrasting organic inputs (i.e., Tithonia diversifolia (TD; C/N ratio: 13, Lignin: 8.9%; Polyphenols: 1.7%), Calliandra calothyrsus (CC; 13; 13; 9.4) and Zea mays (ZM; 59; 5.4; 1.2); rate of 4 Mg C ha-1 year-1) combined with mineral N fertilizer (120 kg CaNH4NO3 ha-1 growing season-1) on amoA gene-based abundance (i.e., functional potential) and community composition of AOB and AOA. AOB abundance was significantly lower in CC and ZM compared to TD, whereas AOA abundance was significantly lower in CC compared to ZM and TD. This reduction was attributed to a considerable N stress induced by limited organic N availability in ZM and polyphenol-protein complexes in CC. High abundance of AOA under ZM was attributed to their affinity to ammonium under N limiting conditions. Abundance shifts matched observed community composition differences between TD versus ZM (AOB) as well as TD versus ZM and CC (AOA). Mineral N irrespective of organic input type depressed abundance of AOA, but not AOB. This implied utilization of ammonium from fertilizer and organic N by AOB, while AOA mainly utilized ammonium from organic N. Our findings suggested input type dependent effects on AOB/AOA abundance and community composition, but influence of other factors such as soil type, seasonality and crop growth stages remain uncertain. These factors should not only be studied on basis of the functional potential of ammonia oxidizing prokaryotes as given in this study, but also by rRNA analyses to capture the active proportion of existent AOB and AOA.

Keywords: Ammonia-oxidizing bacteria; Ammonia-oxidizing archaea; Abundance; Community composition; Biochemical organic input quality; Mineral nitrogen fertilizer.

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution