2 9 2 g
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Metabolic Engineering
Vol. 30, 2015, Pages: 121–129

Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid

Chan Woo Song, Joungmin Lee, Yoo-Sung Ko, Sang Yup Lee

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

Abstract

A novel metabolic pathway was designed for the production of 3-aminopropionic acid (3-AP), an important platform chemical for manufacturing acrylamide and acrylonitrile. Using a fumaric acid producing Escherichia coli strain as a host, the Corynebacterium glutamicum panD gene (encoding l-aspartate-α-decarboxylase) was overexpressed and the native promoter of the aspA gene was replaced with the strong trc promoter, which allowed aspartic acid production through the aspartase-catalyzed reaction. Additional overexpression of aspA and ppc genes, and supplementation of ammonium sulfate in the medium allowed production of 3.49 g/L 3-AP. The 3-AP titer was further increased to 3.94 g/L by optimizing the expression level of PPC using synthetic promoters and RBS sequences. Finally, native promoter of the acs gene was replaced with strong trc promoter to reduce acetic acid accumulation. Fed-batch culture of the final strain allowed production of 32.3 g/L 3-AP in 39 h.

Keywords: 3-Aminopropionic acid; ß-Alanine; Fumaric acid; Metabolic engineering; Escherichia coli.

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution