Microbes, nuclear waste and power

 

With implications that could eventually benefit sites forever changed by nuclear contamination, researchers at Michigan State University have unravelled the mystery of how microbes generate electricity while cleaning up nuclear waste and other toxic metals.

 

Details of the process, which can be improved and patented, are published in the current issue of the Proceedings of the National Academy of Sciences.

 

Geobacter bacteria are tiny micro-organisms that can play a major role in cleaning up polluted sites around the world,” said Gemma Reguera, who is an MSU (Michigan State University) AgBio Research scientist. “Uranium contamination can be produced at any step in the production of nuclear fuel, and this process safely prevents its mobility and the hazard for exposure.”

 

The ability of Geobacter to immobilize uranium has been well documented. However, identifying the Geobacter’s conductive pili or nanowires as doing the yeoman’s share of the work is a new revelation, according to a Michigan State University press release.

 

Nanowires, hair-like appendages found on the outside of Geobacter’s, are the managers of electrical activity during a cleanup. “Our findings clearly identify nanowires as being the primary catalyst for uranium reduction,” Reguera said. “They are essentially performing nature's version of electroplating with uranium, effectively immobilizing the radioactive material and preventing it from leaching into groundwater.”

 

 

 

 

 

 

Source: The Hindu, Sep 08, 2011.

 

 

 

 

 

 

 

 

 

 

 

ENVIS CENTRE Newsletter Vol.9, Issue 4, Oct - Dec 2011
 
 
Copyright © 2005 ENVIS Centre ! All rights reserved This site is optimized for 1024 x 768 screen resolution Query Form | Feedback | Privacy